A brief introduction to causal inference
Outline

- Causal effects and where to find them
- Spurious correlations
- Simpson’s paradox
- Randomised Controlled Trials (RCTs)
- Causal effects without RCTs - Adjustment
- What if we don’t have the graph? - Causal discovery
- Instrumental variables
- Prediction
Causal effects and where to find them

the effectiveness of a ‘treatment’ or ‘intervention’ on an outcome.

Seen in:

- Pharmaceuticals
- Economic policy
- Epidemiology/Public health policy
- Nutrition
- Product testing
Outline

Causal effects and where to find them

Spurious correlations

Simpson’s paradox

Randomised Controlled Trials (RCTs)

Causal effects without RCTs - Adjustment

What if we don’t have the graph? - Causal discovery

Instrumental variables

Prediction
Spurious correlations (and conclusions)

1. Mozzarella consumption per capita vs Civil engineering doctorates
2. Income vs marriage status
3. Fires vs. fire fighters
Spurious correlations (and conclusions)

1. Mozzarella consumption per capita vs Civil engineering doctorates
2. Income vs marriage status
3. Fires vs. fire fighters
Outline

Causal effects and where to find them

Spurious correlations

Simpson’s paradox

Randomised Controlled Trials (RCTs)

Causal effects without RCTs - Adjustment

What if we don’t have the graph? - Causal discovery

Instrumental variables

Prediction
Simpson’s paradox - 1
Does using an air ambulance improve chances of full recovery?

<table>
<thead>
<tr>
<th>Injury type / Transport</th>
<th>Air Ambulance</th>
<th>Ambulance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport injury</td>
<td>81/87 = 93%</td>
<td>234/270 = 87%</td>
</tr>
<tr>
<td>Motor injury</td>
<td>192/263 = 73%</td>
<td>55/80 = 69%</td>
</tr>
<tr>
<td>Total</td>
<td>273/350 = 78%</td>
<td>289/350 = 83%</td>
</tr>
</tbody>
</table>
Simpson’s paradox - 1
Does using an air ambulance improve chances of full recovery?

<table>
<thead>
<tr>
<th>Injury type / Transport</th>
<th>Air Ambulance</th>
<th>Ambulance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport injury</td>
<td>81/87 = 93%</td>
<td>234/270 = 87%</td>
</tr>
<tr>
<td>Motor injury</td>
<td>192/263 = 73%</td>
<td>55/80 = 69%</td>
</tr>
<tr>
<td>Total</td>
<td>273/350 = 78%</td>
<td>289/350 = 83%</td>
</tr>
</tbody>
</table>
Simpson’s paradox - 2

exercise

cholesterol
Simpson’s paradox - 2

exercise

cholesterol
Simpson’s paradox - 2
Outline

Causal effects and where to find them
Spurious correlations
Simpson’s paradox

Randomised Controlled Trials (RCTs)
Causal effects without RCTs - Adjustment
What if we don’t have the graph? - Causal discovery
Instrumental variables
Prediction
Randomised controlled trials

Used to measure the effectiveness of an intervention on an outcome - i.e the causal effect.

“Solves the problem of observed and unobserved confounding”

1. Take a large sample from the population
2. Randomly assign the intervention to half of the sampled units
3. Compare the difference in the average outcomes of the two groups
RCTs - why does it give us the causal effect?

\[Y = \begin{cases}
 Y_1 & \text{if } I = 1 \\
 Y_0 & \text{if } I = 0
\end{cases} \]

\[\mathbb{E}[Y_1 - Y_0] \] \hspace{1cm} (1)

\[\mathbb{E}[Y|I = 1] - \mathbb{E}[Y|I = 0] \] \hspace{1cm} (2)

\[= \mathbb{E}[Y_1|I = 1] - \mathbb{E}[Y_0|I = 0] \] \hspace{1cm} (3)
RCTs - why does it give us the causal effect?

\[Y = \begin{cases}
Y_1 & \text{if } I = 1 \\
Y_0 & \text{if } I = 0
\end{cases} \]

\[\mathbb{E}[Y_1 - Y_0] \quad (1) \]

\[\mathbb{E}[Y|I = 1] - \mathbb{E}[Y|I = 0] \quad (2) \]

\[= \mathbb{E}[Y_1|I = 1] - \mathbb{E}[Y_0|I = 0] \quad (3) \]
Randomised controlled trials - the gold standard (?)

1. Population shift
2. Non-representative samples
Outline

Causal effects and where to find them
Spurious correlations
Simpson’s paradox
Randomised Controlled Trials (RCTs)
Causal effects without RCTs - Adjustment
What if we don’t have the graph? - Causal discovery
Instrumental variables
Prediction
Causal effects without RCTs - Adjustment

If we have data that doesn’t come from an RCT, can we find the causal effect?
Causal effects without RCTs - Adjustment

Exercise \rightarrow \text{age} \rightarrow \text{Cholesterol}

Exercise \rightarrow \text{age} \rightarrow \text{Cholesterol}
Causal effects without RCTs - Adjustment

\[
Pr_{G'}(C|E) = \sum_a Pr_{G'}(C|E, A) Pr_{G'}(A|E)
\]

\[
= \sum_a Pr_{G'}(C|E, A) Pr_{G'}(A)
\]

\[
= \sum_a Pr_G(C|E, A) Pr_G(A)
\]
Causal effects without RCTs - Adjustment

Transport

Severity

Recovery

Injury Type
Outline

Causal effects and where to find them
Spurious correlations
Simpson’s paradox
Randomised Controlled Trials (RCTs)
Causal effects without RCTs - Adjustment
What if we don’t have the graph? - Causal discovery
Instrumental variables
Prediction
Causal discovery

1. Given set of variables $X_1, X_2, \ldots X_n$
2. Start with the fully connected graph
3. Test independence between variables to remove some edges
4. Test conditional independence between variables to remove edges \ldots
Outline

Causal effects and where to find them
Spurious correlations
Simpson’s paradox
Randomised Controlled Trials (RCTs)
Causal effects without RCTs - Adjustment
What if we don’t have the graph? - Causal discovery
Instrumental variables
Prediction
Instrumental variables

1. The instrument (I) must influence X
2. The instrument (I) does not affect the outcome (Y) in any way other than through the intervention (X)
3. There is no common cause of the instrument (I) and the outcome (Y)
Outline

Causal effects and where to find them

Spurious correlations

Simpson’s paradox

Randomised Controlled Trials (RCTs)

Causal effects without RCTs - Adjustment

What if we don’t have the graph? - Causal discovery

Instrumental variables

Prediction
Prediction

Take care when using spurious variables for prediction

The causal variables should be robust under most interventions

The effect variables are still useful for prediction, even when not robust
Prediction

Take care when using spurious variables for prediction

The causal variables should be robust under most interventions

The effect variables are still useful for prediction, even when not robust
Outline

Causal effects and where to find them
Spurious correlations
Simpson’s paradox
Randomised Controlled Trials (RCTs)
Causal effects without RCTs - Adjustment
What if we don’t have the graph? - Causal discovery
Instrumental variables
Prediction